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Abstract

There are several approaches to the prediction of
the noise from sources on high speed surfaces. Two of
these are the Kirchhoff and the Ffowcs williams-Hawk-
ings methods. It can be shown that both of these meth-
ods depend on the solution of the wave equation with
mathematically similar inhomogeneous source terms.
Two subsonic solutions known as Formulation 1 and 1A
of Langley are simple and efficient for noise prediction.
The supersonic solution known as Formulation 3 is very
complicated and difficult to code. Because of the com-
plexity of the result, the computation time is longer than
the subsonic formulas. Furthermore, it is difficult to
assess the accuracy of noise prediction. We have been
searching for a new and simpler supersonic formulation
without these shortcomings. In the last AIAA Aeroa-
coustics Conference in Toulouse, Farassat, Dunn and
Brentner presented a paper in which such a result was
presented and called Formulation 4 of Langley. In this
paper we will present two analytic tests of the validity
this Formulation: i) the noise from dipole distribution on
the unit circle whose strength varies radially with the
square of the distance from the center and ii) the noise
from dipole distribution on the unit sphere whose
strength varies with the cosine of the angle from the
polar axis. We will discuss the question of singularities
of Formulation 4. 

Introduction

Two common methods of noise prediction from
moving surfaces are based on the Ffowcs Williams-
Hawkings (FW-H) equation
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 and the Kirchhoff formula
for moving surfaces
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. It can be shown that both these
methods are based on the solution of wave equation with
mathematically similar inhomogeneous source terms.
The subsonic solutions known as Formulations 1 and 1A
of Langley
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 are simple and efficient to use on a com-
puter. The supersonic result known as Formulation 3 is
very complicated and difficult to code for noise
prediction
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. Because of the complexity of this result, the

execution time on a computer is long compared to the
subsonic formulations. There are many surface geomet-
ric parameters, such as local normal curvature in various
directions, in Formulation 3 which can not be physically
interpreted. It is difficult to assess the accuracy of noise
prediction because of the complexity of the computing
algorithm. We have searched for simpler results for pre-
diction of noise from sources on high speed surfaces.

Farassat, Dunn and Brentner have presented a new
result in the last AIAA Aeroacoustics Conference in
Toulouse which is considerably simpler than
Formulation 3
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. This result has been designated
Formulation 4. The present paper continues the study of
this new result. We apply Formulation 4 to two problems
whose analytic solutions are known by other methods.
These are:  i) the noise from dipole distribution on the
unit circle whose strength varies radially with the square
of the distance from the center and ii) the noise from
dipole distribution on the unit sphere whose strength
varies with the cosine of the angle from the polar axis.
We show that we do obtain the known analytic results
and thus have validated Formulation 4.

We discuss the question of singularities of the new
formulation which surprisingly is simpler to answer
than those of Formulation 3. We was shown that the sin-
gularities are removable for FW-H equation if we
include the surface terms from the quadrupole source,
and in the Kirchhoff formula for supersonic surfaces. 

The Governing Equation and Its Solution

Given an open moving surface ,
where  denotes the edge of the panel, it can
be shown that the governing differential equation for
noise prediction by FW-H equation and the Kirchhoff
method is
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: 

(1)

f 0 f̃ 0>,=
f f̃ 0= =

p′2 q1 H f̃( ) δ f( ) q
˜ 2

H f( ) δ′s f( )+=

q3 δ f̃( ) δ f( )+
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where the functions  are described in
reference 7. In this equation,  is the Heaviside
function,  is the Dirac delta function and  is
a distribution that picks up normal derivative of a test
function on the surface . The full solution of this
equation (Formulation 4) is
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:

(2)

Here, ,  are the observer
and the source space-time variables, respectively, and 
is the angle between the radiation direction 
and the local normal to . The unit vector in the
direction of projection of  on the local tangent plane to
the source surface is denoted  and the local normal
curvature of  in the direction of  is . the
geodesic unit normal of the edge of the panel is  and

 are functions of the

 

 

 

kinematic and geometric
parameters of the panel
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. We have defined
 and . The last

term only exists if the collapsing sphere
 leaves the panel tangentially at the

point 

 

T

 

. The signum function is denoted 

 

sig

 

(.),
 and  is the local normal curvature of the

panel at 

 

T

 

 as a function of azimuthal angle . The Mach
number in the radiation direction is . We mention
here that Formulation 4 is valid at all Mach numbers
although we intend to use it for surfaces moving at tran-
sonic and supersonic Mach numbers.

Note that we have issued a  correction to the result
presented in reference 7. The correction appears in the
electronic copy of this reference at NASA Langley
Technical Report Server. The electronic address is given
in the references below.

Validation of Formulation 4

Since the part of the new formulation depending on
 and  are simple and have been validated before
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,
we only need to validate the part depending on the
source term . We will again start with the differential
equation and assume that the sources are stationary. It
will be seen that these assumptions are necessary
because we are seeking problems with analytic solutions

and Formulation 4 is valid for both subsonic and super-
sonic surface sources. We consider two problems here.

Example 1- Dipole Distribution on the Unit Circle

We consider dipole distribution on the unit circle
with the center at the origin of the x

 

1

 

x

 

2

 

-plane described
by the following wave equation:

(3-a)

                     (3-b)

,  (3-c)

The solution of this problem from classical mathematics
is

(4)

where  is the polar coordinates in the x

 

1

 

x

 

2

 

-plane,
 and 

 

r

 

 is the distance between the source and
the observer. We will later integrate Eq. (4) numerically
to compare with the results from Formulation 4.

Now we use Formulation 4, Eq. (2), for solving
Eq. (3). Refer to Fig. 1 for definition of some symbols.
Because of the symmetry of the problem with respect to
the x

 

3

 

-axis, we assume that the observer is in the x

 

1

 

x

 

3

 

-
plane. We have the following relations:

(5-a)

(5-b)

  (5-c,d,e)

(5-f)

(5-g)

q1 q
˜ 2

 and q3,
H .( )

δ .( ) δ′s f( )

f 0=

4πp′ x t,( )

   
1
r
--- 

q1 θcot t1 q22∇  κ1– q2⋅+

Λ
---------------------------------------------------------------

ret
Σd

F 0=
F̃ 0>

∫=

  +
1
r
--- 

q3 q+
2
ν t1 θcot⋅

Λ0
------------------------------------------

ret

Ld
F 0=
F 0=

∫

Σ
4q2

r 1 Mr–
---------------------- sig k ϕ( )[ ]

kr k ϕ( )–
------------------------ ϕd

0

π 2⁄
∫

T
+

r x y–= x t,( ) and y τ,( )
θ

r̂ r r⁄=
f 0=
r̂

t1
f 0= t1 κ1

ν
Λ and Λ0

F f y τ,( )[ ] ret = F̃ f̃ y τ,( )[ ] ret =

g τ t– r c⁄– 0==

kr 1 r⁄= k ϕ( )
ϕ

Mr

q1 q3

q2

p′2 ∂
∂x3
-------- q x1 x2 t, ,( )δ x3( )[ ]=

= q x1 x2 t, ,( )δ′ x3( )

q2 1 ρ2
+( )eiωt

–=

ρ2
x1

2
x2

2
+= ρ 1≤

4πp′ x t,( ) =

x3e
iωt e

i– kr

r
3

----------- 1 ρ2
+( ) 1 ikr+( )ρ ϕd ρd

0

2π
∫0

1
∫

ρ ϕ,( )
k ω c⁄=

r
2 ρ2

x1
2

x3
2

2ρx1 ϕcos–+ +=

r1
2 ρ2

x1
2

2ρx1 ϕcos–+=

θcos x3 r ,⁄= θsin r1 r ,⁄= θcot x3 r⁄
1

=

t1

x1 ρ ϕcos–

r1
--------------------------- ρ ϕsin–

r1
------------------ 0, , 

 =

t1 q2∇⋅  
2ρe

iωt
x1 ϕ ρ–cos( )
r1

-------------------------------------------------–=
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                 (5-h,i)

(5-j)

Using these results in Eq. (2), we get 

The two expressions in Eq. (4) and Eq. (6) look very dif-
ferent from each other. We have used Mathematica 3 to
compute  from these two expressions for
11 values of . In these calculations, shown in Table 1,
we used ,  and . It is seen that
the results from the two expressions are the same to a
remarkable degree of accuracy.

This example validates Formulation 4 for a flat
source surface. The next example applies this result to a
curved surface.

Example 2- Dipole Distribution on a Sphere

We will consider a unit sphere  with the cen-
ter at the origin and a dipole distribution varying with
the cosine of the angle  from the x3-axis. See Fig. 2
for some notation. We consider the following wave
equation:

(7)

We use  and  for the observer and
the source variables, respectively. Let  be the distance
of the observer from the origin. Then, the solution of Eq.
(7) in the geometric far field when the observer is on the
positive x3-axis is:

(8)

Now, for the observer on the x3-axis and in the far
field, Formulation 4, Eq. (6) gives: 

(9)

Here,  is the right side of Eq. (7) and  is element
of the surface area of the sphere . We next use the fol-
lowing results in Eq. (9): 

(10-a,b,c,d)

(11)

(12)

(13)

In Eq. (11), the symbol   stands for the source time that
can be related to the angle  on the surface of the
sphere. When we use the above results in eq. (9), we get
exactly the classical results Eq. (8). We have thus vali-
dated Formulation 4 for a curve surface also. 

Discussion of the Singularities

One of the problems associated with supersonic
surface sources is the appearance of singularities in the
solution of wave equation. Some of these problems are
purely mathematical in nature and their cause is the
wrong choice of variables in the solution of the wave
equation. There is also the possibility of physical singu-

κ1 0,= κg 1 r1⁄( ),=

ν t1⋅ 1 x1 ϕcos–( ) r1⁄=

p′ x t,( )  
x3e

iωt

2π
---------------  

ρ2
e

ikr–
x1 ϕ ρ–cos( )

rr 1
2

-------------------------------------------------- ϕd ρd
0

2π
∫0

1
∫–

+ 
x3e

iωt

2π
---------------

x1 ϕ 1–cos

r1
2

---------------------------e
ikr–

ρ 1=

ϕd
0

2π
∫

+ 
e

iωt

2
--------- 1 x1

2
+( )e

ikx3–
H 1 x1

2
–[ ] 6( )

=

p′ x t,( )e iωt–

x1
k 10= x2 0= x3 5=

R 1=

Ψ

p′2  e
iωt Ψ δ′ R 1–( )cos–=

R Ψ Φ, ,( ) ρ ψ ϕ, ,( )
r0

p′ x t,( ) i  ksin
r0

-------------- e
i ωt kr0–( )

=

p′ x t,( ) 1
4πr0
------------  θt1 q22∇⋅cot[ ]

ret
Sd∫=

 
1

4πr0
------------

κ1

sin
2θ

------------- κg θcot+
 
 
 

q2
ret

Sd∫–

ρq2

2r0
---------

t r0 1+( ) c⁄–
–

ρq2

2r0
---------

t r0 1–( ) c⁄–
–

q2 dS

θ ψ, κ1 1, ρ 1, κg ψcot==–==

t1 q22∇⋅  
∂

∂ψ
------- ψe

iωτ
cos[ ]––=

= ψe
iωτ

sin–

κ1

sin
2θ

------------- κg θcot+ 1–=

 
ρq2

2r0
---------–

t r0 1+( ) c⁄–

ρq2

2r0
---------

t r0 1–( ) c⁄–
–

i ksin
r0

------------e
i ωt kr0–( )

=

τ
ψ
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larities where no choice of variables can get rid of. We
mention that both the thickness and loading sources on
an open supersonic surface will have true singularities at
some observer time. This problem was treated by Di
Bernardis8 and Farassat and Myers9. The latter authors
showed that the inclusion of surface sources from the
quadrupole source term of FW-H equation in the solu-
tion of this equation results in integrable singularities.
We have shown that similar conclusion holds for the
new formulation when applied to the solution of FW-H
equation and the governing equation for the Kirchhoff
formula for moving surfaces7. 

The singularities of Formulation 3 for an open
supersonic surface appear when part of its edge travels
at supersonic speed in the plane normal to the edge. One
can then construct the observer positions and the times
that the singularity will be felt at the observer. The situa-
tion for Formulation 4 is somewhat different. First the
singularities from the surface and line integrals are
much simpler to analyze than those of Formulation3 but
of the same nature. Another cause of the appeance of
singularities is due to the geometry of the source surface
itself and is related to the formation of the caustic in
geometric acoustics10. This type of singularity comes
from the last term of Eq. (2). We will discuss the prob-
lem of singularities in a comprehensive paper on the
new formulation later. 

Concluding Remarks

The purpose of this paper has been to validate For-
mulation 4 of Langley for prediction of noise from high
speed moving surfaces. We have used two problems for
which analytical solutions are available from classical
analysis. We have shown that these solutions can be
obtained also using the new formulation. The first prob-
lem is the radiation field of dipole distribution on a flat
surface. We verified by a numerical study that the radia-
tion field can be obtained by the new formulation. The
second problem is radiation from dipole distribution on

a sphere. To get an analytically simple expression from
classical analysis, the observer is located in the far field
and on x3-axis. We showed that this result could also be
obtained by the new formulation. 

The most significant fact about the new formulation
is that it is much simpler than any previously known
result in time domain for prediction of the noise from
high speed surface sources. Furtheremore, because of
the observer location, in the case of propfan noise calcu-
lations, none of the problems of singularities are
present. This appears to be a major advance in noise pre-
diction theory.  

References

1. Ffowcs Williams, J. E. and Hawkings, D.L., “Sound
generation by turbulence and surfaces in arbitrary
motion”, Phil Trans. Roy. Soc. (London), 264A ,
321–342 (1969) 

2. Farassat, F., “The Kirchhoff formulas for moving
surfaces in aeroacoustics—The subsonic and
supersonic cases”, NASA Technical Memorandum
110285 (1996), (Available at ftp://
techreports.larc.nasa.gov/pub/techreports/larc/96/
NASA-96-tm110285.ps.Z)

3. Farassat, F., “Theory of noise generation from mov-
ing bodies with an application to helicopter rotors”,
NASA TR R-451 (1975), (Available at http://techre-
ports.larc.nasa.gov/ltrs/PDF/NASA-75-trr451.pdf) 

4. Farassat F. and Succi, G. P., “The prediction of heli-
copter rotor discrete frequency noise”, Vertica, 7,
309–320 (1983) 

5. Brentner, Kenneth S., “Prediction of helicopter
rotor discrete frequency noise—A computer pro-
gram incorporating realistic blade motions and
advanced acoustic formulation”, NASA Technical
Memorandum 87721 (1986)

6. Farassat, F., Padula, S. L. and Dunn, M. H.,
“Advanced turboprop noise prediction based on
recent theoretical results”, J. of Sound and Vib.,
119, 53–79 (1987)   

7. Farassat, F., Brentner, Kenneth S. and Dunn, M. H.,
“A study of supersonic surface sources—The
Ffowcs Williams-Hawkings equation and the
Kirchhoff formula”,  AIAA Paper 98-2375 (1998)



5

American Institutes of Aeronautics and Astronautics

x3

x2

x1
r1

r

t
n

(x1, 0, x3)Observer

θ

ϕρ

x3

rρ
Θ

R

x2x1

Observer

Source

(Available at http://techreports.larc.nasa.gov/ltrs/
PDF/1998/aiaa/NASA-aiaa-98-237
8. Di Bernardis, Enrico: On a New Formulation for 
the Aeroacoustics of Rotating Blades (in Italian), 
Ph.D. Thesis, University of Romr (La Sapienza), 
1989 
9. Farassat, F. and Myers, M. K.: Line Source Sin-
gularity in the Wave equation and Its Removal by 
Quadrupole sources – a Supersonic Propeller Noise 
Problem, in Theoretical and Computational Acous-
tics, Volume 1, J. E. Ffowcs Williams, D. Lee, and 
A. D. Pierce (eds.), World Scientific Publishing, 
1994
10. Pierce,  Allan D.: Acoustics – An Introduction 
to Its Physical Principles and Applications,  Acous-
tical Society of America, 1989

Figure 1. Definition of some symbols in Example 1
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Table 1. Numerical Comparison of  From Eq. (4) and Formulation 4, Eq. 
, , .

Classical, Eq. (4)
Formulation 4

Eq. (6)

0 0.21098 + 0.673096 i 0.21098 + 0.673096 i

0.25 0.23068 + 0.637725 i 0.238067 + 0.637724 i

0.50 0.30169 + 0.531172 i 0.301689 + 0.531171 i

0.75 0.355626 + 0.361800 i 0.355625 + 0.3618 i

0.975 0.353059 + 0.184642 i 0.353058 +  0.184641 i

0.995 0.34963 + 0.169323 i 0.349588 + 0.169312 i

0.9995 0.348784 + 0.165908 i 0.348784 + 0.165908 i

0.99995 0.348698 + .165567 i 0.348698 + 0.165567 i

1.00005 0.348679 + 0.165491 i 0.348679 + 0.165491 i

1.25 0.263827 + 0.006876 i 0.263827 + 0.006876 i

5 0.00397175 − 0.0118504 i 0.00397175 + 0.0118504 i

p′ x t,( )e iωt–

k 10= x2 0= x3 5=

x1
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Outline of the Talk

 

– A short history of development of time 
domain formulations at Langley

– The governing wave equation

– Formulation 4

– Analytic validation by two examples

– The issue of singularities

– Concluding remarks
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A Short History of Development of 
Time Domain Formulations at Langley

 

We have been interested in helicopter rotor and 
propeller noise prediction since early 70’s. We 
have developed

 

*

 

:

i) Formulations 1 and 1A for subsonic surface 
motion with Doppler factor- highly efficient for 
noise prediction

ii) Formulation 3 for subsonic, transonic and 
supersonic surface motion without the Doppler 
factor- very complicated, difficult to code and 
inefficient for noise prediction

We need a replacement for Formulation 3!

 

* Formulation 2 was abandoned because of its limitations
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The Governing Wave Equation

 

For sources on an open surface given by 
, , with edge defined by 
, the governing equation for both 

FW-H and Kirchhoff methods is:

 

where  and  are functions of fluid mechanic and 

geometric parameters on the surface.

Mathematically, the most difficult source term is the 
one involving 

 

. 

 

Formulation 4 is the solution of the 

above equation.

f x t,( ) 0= f̃ x t,( ) 0>
f f̃ 0= =

p′2 q1 H f̃( )δ f( ) q
˜2

H f( )˜ δ′ f( ) + q3 δ f̃( )δ f( )+=

q
1

q
2

, q
3

q2
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Formulation 4 - 

 

The 4th AIAA/CEAS 
Aeroacoustics Conference in Toulouse, France 1998  

Notation :

 

 , ,  element of surface area of 

,  element of length of the edge , , 

,  unit vector along projection of 

 

 

 

on the local tangent plane,  

angle between unit normal and radiation direction,  local geodesic normal of 

the edge of panel,  local normal curvature as a function of azimuthal 

angle ,  local normal Mach number,  functions of geometric and 

kinematic parameters, , local normal curvature along ,  T: 

tangency condition of collapsing sphere and the panel  

4πp′ x t,( )    
1
r
--- 

q1 θcot t1 q22∇  κ1– q2⋅+

Λ
------------------------------------------------------------------

ret
Σd

F 0=
F̃ 0>

∫=

  
1
r
--- 

q3 q2ν t1 θcot⋅+

Λ0
-------------------------------------------

ret
 L Σ

4q2
r 1 Mn–
----------------------- sig k ϕ( )[ ]

kr k ϕ( )–
------------------------ ϕd

0

π 2⁄
∫

T
+d

F 0=
F̃ 0=

∫+

F f[ ] ret= F̃ f̃[ ] ret= dΣ

F 0= dL F F̃ 0= = r̂ r r⁄=
r x y–= t1 r̂ θ

ν
k ϕ( )

ϕ Mn Λ Λ0,
kr 1 r⁄= κ1 t1
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Analytic Validation by Two 
Examples

We will test Formulation 4 for the terms 
involving  only. The other terms are simple 

and validated before (JSV,119,1987, 53-79). 
The two examples are:

i) Dipole distribution on unit circle whose 
strength varies with square of distance from 
center for arbitrary observer position, and

ii) Dipole distribution on unit sphere whose 
strength varies as cosine of the angle from 
x3-axis for observer in the geometric far field 
and on the x3-axis 

q
2
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x3

x2

x1
r1

r

t
n

(x1, 0, x3)Observer

θ

ϕρ

Analytic Validation- Example 1

Dipole distribution on unit

circle

,   ,   ,    

Solution from classical mathematics

p′2
∂

∂x3
--------- q x1 x2 t, ,( )δ x3( )[ ]=

= q x1 x2 t, ,( )δ′ x3( )

q2 1 ρ2
+( )eiωt

–= ρ2
x1
2

x2
2

+= ρ 1≤ k ω c⁄=

4πp′ x y,( ) x3e
iωt e

i– kr

r
3

------------ 1 ρ2
+( ) 1 ikr+( )ρ ϕd ρd

0

2π
∫0

1
∫=
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 Analytic Validation- Example 1 (Cont’d) 

Solution from Formulation 4

 Heaviside function

p′ x t,( )  
x3e

iωt

2π
----------------  

ρ2
e

ikr–
x1 ϕ ρ–cos( )

rr 1
2

---------------------------------------------------- ϕd ρd
0

2π
∫0

1
∫–

+ 
x3e

iωt

2π
----------------

x1 ϕ 1–cos

r1
2

---------------------------e
ikr–

ρ 1=

ϕd
0

2π
∫

+ 
e
iωt

2
---------- 1 x1

2
+( )e

ikx3–
H 1 x1

2
–[ ]

=

H ( )
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Analytic Validation- Example 1 (Cont’d)

Numerical Comparison of  From 
Classical Method and Formulation 

, , 

The agreement of the two solutions is Excellent!

Classical Solution Formulation 4

0 0.21098 + 0.673096 i 0.21098 + 0.673096 i
0.25 0.23068 + 0.637725 i 0.238067 + 0.637724 i
0.50 0.30169 + 0.531172 i 0.301689 + 0.531171 i
0.75 0.355626 + 0.361800 i 0.355625 + 0.361800 i
0.975 0.353059 + 0.184642 i 0.353058 +  0.184641 i
0.995 0.34963 + 0.169323 i 0.349588 + 0.169312 i
0.9995 0.348784 + 0.165908 i 0.348784 + 0.165908 i
0.99995 0.348698 + .165567 i 0.348698 + 0.165567 i
1.00005 0.348679 + 0.165491 i 0.348679 + 0.165491 i
1.25 0.263827 + 0.006876 i 0.263827 + 0.006876 i
5 0.00397175 +0.0118504 i 0.00397175 + 0.0118504 i

p′ x t,( )e iωt–

k 10= x2 0= x3 5=

x1
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x3

rρ
Θ

R

x2x1

Observer

Source

Analytic Validation-Example 2

Dipole distribution on

unit sphere,  angle from

x3-axis

Solution from classical mathematics for 
observer in the geometric far field and on 
x3-axis,  observer distance from origin

Ψ

p′2  e
iωt Ψ δ′ R 1–( )cos–=

r0

p′ x t,( ) i  ksin
r0

-------------- e
i ωt kr0–( )

=
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Analytic Validation- Example 2 (Cont’d)

Solution from formulation 4 (before far field 
approximation and locating the observer on the x3-axis)

When the observer approximation is 
made, the two solutions are in agreement!

p′ x t,( ) 1
4πr0
------------  θt1 q22∇⋅cot[ ]

ret
Sd∫=

 
1

4πr0
------------

κ1

sin
2θ

------------- κg θcot+
 
 
 

q2
ret

Sd∫–

ρq2
2r0
---------

t r 0 1+( ) c⁄–
–

ρq2
2r0
---------

t r 0 1–( ) c⁄–
–
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The Issue of Singularities

– The singularities of Formulation 4 are of 
lower order than Formulation 3 and easier 
to analyze 

– A new kind of singularity depending on 
the geometry of the surface and related to 
the formation of caustic in geometrical 
acoustics appear in Formulation 4 

– The solution of FW-H Eq. when surface 
sources from quadrupole term are added 
to thickness and loading terms is 
singularity free for supersonic surfaces



13 of 13F. Farassat and Mark Farris

Concluding Remarks

– We have validated Formulation 4 using two 
examples whose analytic solutions are 
known from classical mathematics

– Formulation 4 is the simplest result we 
know for prediction of noise from sources 
on high speed surfaces

– The analysis of singularities of the new 
formulation is much simpler than those of 
Formulation 3

– Formulation 4 is useful in both the FW-H 
and Kirchhoff methods   


